17 research outputs found

    Shallow waters simulation

    Get PDF
    Dissertação de mestrado integrado em Informatics EngineeringRealistic simulation and rendering of water in real-time is a challenge within the field of computer graphics, as it is very computationally demanding. A common simulation approach is to reduce the problem from 3D to 2D by treating the water surface as a 2D heightfield. When simulating 2D fluids, the Shallow Water Equations (SWE) are often employed, which work under the assumption that the water’s horizontal scale is much greater than it’s vertical scale. There are several methods that have been developed or adapted to model the SWE, each with its own advantages and disadvantages. A common solution is to use grid-based methods where there is the classic approach of solving the equations in a grid, but also the Lattice-Boltzmann Method (LBM) which originated from the field of statistical physics. Particle based methods have also been used for modeling the SWE, namely as a variation of the popular Smoothed-Particle Hydrodynamics (SPH) method. This thesis presents an implementation for real-time simulation and rendering of a heightfield surface water volume. The water’s behavior is modeled by a grid-based SWE scheme with an efficient single kernel compute shader implementation. When it comes to visualizing the water volume created by the simulation, there are a variety of effects that can contribute to its realism and provide visual cues for its motion. In particular, When considering shallow water, there are certain features that can be highlighted, such as the refraction of the ground below and corresponding light attenuation, and the caustics patterns projected on it. Using the state produced by the simulation, a water surface mesh is rendered, where set of visual effects are explored. First, the water’s color is defined as a combination of reflected and transmitted light, while using a Cook- Torrance Bidirectional Reflectance Distribution Function (BRDF) to describe the Sun’s reflection. These results are then enhanced by data from a separate pass which provides caustics patterns and improved attenuation computations. Lastly, small-scale details are added to the surface by applying a normal map generated using noise. As part of the work, a thorough evaluation of the developed application is performed, providing a showcase of the results, insight into some of the parameters and options, and performance benchmarks.Simulação e renderização realista de água em tempo real é um desafio dentro do campo de computação gráfica, visto que é muito computacionalmente exigente. Uma abordagem comum de simulação é de reduzir o problema de 3D para 2D ao tratar a superfície da água como um campo de alturas 2D. Ao simular fluidos em 2D, é frequente usar as equações de águas rasas, que funcionam sobre o pressuposto de que a escala horizontal da água é muito maior que a sua escala vertical. Há vários métodos que foram desenvolvidos ou adaptados para modelar as equações de águas rasas, cada uma com as suas vantagens e desvantagens. Uma solução comum é utilizar métodos baseados em grelhas onde existe a abordagem clássica de resolver as equações numa grelha, mas também existe o método de Lattice Boltzmann que originou do campo de física estatística. Métodos baseados em partículas também já foram usados para modelar as equações de águas rasas, nomeadamente como uma variação do popular método de SPH. Esta tese apresenta uma implementação para simulação e renderização em tempo real de um volume de água com uma superfície de campo de alturas. O comportamento da água é modelado por um esquema de equações de águas rasas baseado na grelha com uma implementação eficiente de um único kernel de compute shader. No que toca a visualizar o volume de água criado pela simulação, existe uma variedade de efeitos que podem contribuir para o seu realismo e fornecer dicas visuais sobre o seu movimento. Ao considerar águas rasas, existem certas características que podem ser destacadas, como a refração do terreno por baixo e correspondente atenuação da luz, e padrões de cáusticas projetados nele. Usando o estado produzido pela simulação, uma malha da superfície da água é renderizada, onde um conjunto de efeitos visuais são explorados. Em primeiro lugar, a cor da água é definida como uma combinação de luz refletida e transmitida, sendo que uma BRDF de Cook-Torrance é usada para descrever a reflexão do Sol. Estes resultados são depois complementados com dados gerados num passo separado que fornece padrões de cáusticas e melhora as computações de atenuação. Por fim, detalhes de pequena escala são adicionados à superfície ao aplicar um mapa de normais gerado com ruído. Como parte do trabalho desenvolvido, é feita uma avaliação detalhada da aplicação desenvolvida, onde é apresentada uma demonstração dos resultados, comentários sobre alguns dos parâmetros e opções, e referências de desempenho

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial

    Get PDF
    Background: Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials. Patients and Methods: The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate >= 25 mL/min/1.73 m(2) and albuminuria (urinary albumin-to-creatinine ratio >= 30 to <= 5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level alpha = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure. Conclusions: FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen. Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    Characterisation of microbial attack on archaeological bone

    Get PDF
    As part of an EU funded project to investigate the factors influencing bone preservation in the archaeological record, more than 250 bones from 41 archaeological sites in five countries spanning four climatic regions were studied for diagenetic alteration. Sites were selected to cover a range of environmental conditions and archaeological contexts. Microscopic and physical (mercury intrusion porosimetry) analyses of these bones revealed that the majority (68%) had suffered microbial attack. Furthermore, significant differences were found between animal and human bone in both the state of preservation and the type of microbial attack present. These differences in preservation might result from differences in early taphonomy of the bones. © 2003 Elsevier Science Ltd. All rights reserved

    Brazilian Flora 2020: Leveraging the power of a collaborative scientific network

    No full text
    International audienceThe shortage of reliable primary taxonomic data limits the description of biological taxa and the understanding of biodiversity patterns and processes, complicating biogeographical, ecological, and evolutionary studies. This deficit creates a significant taxonomic impediment to biodiversity research and conservation planning. The taxonomic impediment and the biodiversity crisis are widely recognized, highlighting the urgent need for reliable taxonomic data. Over the past decade, numerous countries worldwide have devoted considerable effort to Target 1 of the Global Strategy for Plant Conservation (GSPC), which called for the preparation of a working list of all known plant species by 2010 and an online world Flora by 2020. Brazil is a megadiverse country, home to more of the world's known plant species than any other country. Despite that, Flora Brasiliensis, concluded in 1906, was the last comprehensive treatment of the Brazilian flora. The lack of accurate estimates of the number of species of algae, fungi, and plants occurring in Brazil contributes to the prevailing taxonomic impediment and delays progress towards the GSPC targets. Over the past 12 years, a legion of taxonomists motivated to meet Target 1 of the GSPC, worked together to gather and integrate knowledge on the algal, plant, and fungal diversity of Brazil. Overall, a team of about 980 taxonomists joined efforts in a highly collaborative project that used cybertaxonomy to prepare an updated Flora of Brazil, showing the power of scientific collaboration to reach ambitious goals. This paper presents an overview of the Brazilian Flora 2020 and provides taxonomic and spatial updates on the algae, fungi, and plants found in one of the world's most biodiverse countries. We further identify collection gaps and summarize future goals that extend beyond 2020. Our results show that Brazil is home to 46,975 native species of algae, fungi, and plants, of which 19,669 are endemic to the country. The data compiled to date suggests that the Atlantic Rainforest might be the most diverse Brazilian domain for all plant groups except gymnosperms, which are most diverse in the Amazon. However, scientific knowledge of Brazilian diversity is still unequally distributed, with the Atlantic Rainforest and the Cerrado being the most intensively sampled and studied biomes in the country. In times of “scientific reductionism”, with botanical and mycological sciences suffering pervasive depreciation in recent decades, the first online Flora of Brazil 2020 significantly enhanced the quality and quantity of taxonomic data available for algae, fungi, and plants from Brazil. This project also made all the information freely available online, providing a firm foundation for future research and for the management, conservation, and sustainable use of the Brazilian funga and flora

    Safety of hospital discharge before return of bowel function after elective colorectal surgery

    No full text
    © 2020 BJS Society Ltd Published by John Wiley & Sons LtdBackground: Ileus is common after colorectal surgery and is associated with an increased risk of postoperative complications. Identifying features of normal bowel recovery and the appropriateness for hospital discharge is challenging. This study explored the safety of hospital discharge before the return of bowel function. Methods: A prospective, multicentre cohort study was undertaken across an international collaborative network. Adult patients undergoing elective colorectal resection between January and April 2018 were included. The main outcome of interest was readmission to hospital within 30 days of surgery. The impact of discharge timing according to the return of bowel function was explored using multivariable regression analysis. Other outcomes were postoperative complications within 30 days of surgery, measured using the Clavien–Dindo classification system. Results: A total of 3288 patients were included in the analysis, of whom 301 (9·2 per cent) were discharged before the return of bowel function. The median duration of hospital stay for patients discharged before and after return of bowel function was 5 (i.q.r. 4–7) and 7 (6–8) days respectively (P < 0·001). There were no significant differences in rates of readmission between these groups (6·6 versus 8·0 per cent; P = 0·499), and this remained the case after multivariable adjustment for baseline differences (odds ratio 0·90, 95 per cent c.i. 0·55 to 1·46; P = 0·659). Rates of postoperative complications were also similar in those discharged before versus after return of bowel function (minor: 34·7 versus 39·5 per cent; major 3·3 versus 3·4 per cent; P = 0·110). Conclusion: Discharge before return of bowel function after elective colorectal surgery appears to be safe in appropriately selected patients
    corecore